
FLGO: A Fully Customizable Federated Learning Platform
Zheng Wang1,2 , Xiaoliang Fan1,2∗ , Zhaopeng Peng1,2 , Xueheng Li1,2 , Ziqi Yang1,2 ,

Mingkuan Feng1,2 , Zhicheng Yang1,2 , Xiao Liu3 , Cheng Wang1,2

1 Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen
University, Xiamen, China

2 Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of
China, Xiamen University, Xiamen, China

3 School of Information Technology, Deakin University, Geelong, Australia
zwang@stu.xmu.edu.cn, fanxiaoliang@xmu.edu.cn, pengzhaopeng@stu.xmu.edu.cn

22920202202797@stu.xmu.edu.cn, lafinhana@outlook.com, 22920202202770@stu.xmu.edu.cn,
zcyang@stu.xmu.edu.cn, xiao.liu@deakin.edu.au, cwang@xmu.edu.cn

Abstract
Federated learning (FL) has found numerous ap-
plications in healthcare, finance, and IoT sce-
narios. Many existing FL frameworks offer a
range of benchmarks to evaluate the performance
of FL under realistic conditions. However, the
process of customizing simulations to accommo-
date application-specific settings, data heterogene-
ity, and system heterogeneity typically remains
unnecessarily complicated. This creates signifi-
cant hurdles for traditional ML researchers in ex-
ploring the usage of FL, while also compromis-
ing the shareability of codes across FL frame-
works. To address this issue, we propose a novel
lightweight FL platform called FLGo, to facilitate
cross-application FL studies with a high degree of
shareability. Our platform offers 40+ benchmarks,
20+ algorithms, and 2 system simulators as out-
of-the-box plugins. We also provide user-friendly
APIs for quickly customizing new plugins that can
be readily shared and reused for improved repro-
ducibility. Finally, we develop a range of experi-
mental tools, including parallel acceleration, exper-
iment tracker and analyzer, and parameters auto-
tuning. FLGo is maintained at flgo-xmu.github.io.

1 Introduction
Federated learning (FL) has attracted wide attention from
both academics and industries [Kairouz et al., 2019; He et
al., 2020; Li et al., 2020]. Its characteristic of privacy protec-
tion has made it a popular choice for data security compliance
applications, including medicine [Liu et al., 2021a], finance
[Long et al., 2021], internet of things [Nguyen et al., 2021],
etc. Researchers have proposed numerous FL algorithms to
address both data [Wang et al., 2021; Li et al., 2020; Karim-
ireddy et al., 2020] and system heterogeneity[Li et al., 2020;
Wang et al., 2020; Wang et al., 2022]. However, the effec-
tiveness of these algorithms is limited [Li et al., 2022], where
each algorithm can only bring non-trivial improvement, or

Figure 1: FLGo implements benchmarks, simulators, and algo-
rithms as independent plugins, where developers can download plu-
gins and share locally customized plugins through a plugin library.

even be worse than FedAvg in specific contexts [Li et al.,
2022]. Therefore, it is essential for engineers to conduct
quantitative evaluations on available FL algorithms before de-
ploying them.

Recently, several platforms were proposed to enable re-
searchers to fairly evaluate FL algorithms by providing mul-
tiple benchmarks. FedScale[Lai et al., 2022] uses system-
atic datasets to simulate realistic mobile-device settings and
real-world federated datasets, while FederatedScope[Xie et
al., 2023] employs an architecture driven by events to cus-
tomize the behaviors of different participants. However, the
complexity involved in implementing customized settings,
such as different applications, heterogeneous data, and sys-
tem heterogeneity, is commonly overlooked. This substantial
limitation poses a significant barrier for machine learning re-
searchers seeking to employ FL frameworks in practical sce-
narios. Additionally, the high complexity of customization
further harms the code shareability due to the absence of stan-
dardized guidelines for customization, even when employing
the same FL framework. In short, addressing these issues is
crucial in order to develop an adaptable FL framework that
facilitates cross-application FL studies with a high degree of
shareability.

To tackle these problems, we develop FLGo, a novel
lightweight FL platform that streamlines cross-application FL
research with a high degree of shareability. By leveraging

ar
X

iv
:2

30
6.

12
07

9v
1

 [
cs

.L
G

]
 2

1
Ju

n
20

23

flgo-xmu.github.io

TFF LEAF PySyft FedML FederatedScope FedScale Flower FLGo
Data Heterogeneity 1 1 1 1 1 1 1 1

System Heterogeneity 0 × × 0 1 1 0 1
High-Level API 0 × 0 1 1 1 1 1

Multi-Architecture × × × 1 1 0 0 1
Asynchrounous × × × 0 1 × × 1

Experiment Manager × × × 1 1 0 × 1
Behavior Customization × × × 1 1 0 0 1

Benchmark Customization × × × 0 × × × 1
Heterogeneity Customization × × × 0 0 0 0 1

Table 1: Comparison on FL Frameworks. 0 represents partially implemented, 1 represents fully implemented, × represents not implemented.

the plugin library, developers can easily distribute their cus-
tomization as plugins, as illustrated in Fig.1. Our main con-
tributions are summerized as follows:

• We propose a novel FL platform, FLGo, to support cus-
tomization with high shareability, where benchmarks,
algorithms and simulators are implemented as plugins
enable the fast development of cross-application FL sce-
narios.

• We provide 40+ comprehensive FL benchmarks, 20+ al-
gorithms, and 2 system simulators in FLGo. We also de-
velop useful tools to support various experimental pur-
poses including parallel acceleration, experiment tracker
and analyzer, and parameters auto-tuning.

• We conduct comprehensive experiments on 6 datasets
to evaluate the functionality of FLGo platform by cus-
tomizing various data and system heterogeneity settings.

2 Related Works
Existing frameworks for FL research. Extensive feder-
ated frameworks were developed to better support FL studies
in both academic and industrial scenarios [He et al., 2020;
Liu et al., 2021b]. LEAF [Caldas et al., 2018] provides
several open-source federated benchmarks. TFF [Bonawitz
et al., 2019] focuses on the application of large-scale mo-
bile devices and PySyft [Ryffel et al., 2018] focuses on deep
learning for data security. FedML [He et al., 2020] facili-
tates equitable comparison of algorithms through the provi-
sion of benchmarks, multiple topologies, and diverse com-
puting paradigms. FedScale [Lai et al., 2022] provides real-
world datasets to evaluate the statistical efficiency and system
efficiency and improve the efficiency under large scalability.
FederatedScope [Xie et al., 2023] employs an event-driven
architecture to enable arbitrary customization on parties’ be-
haviors. Flower [Beutel et al., 2020] supports different back-
ends and is also scalable. However, the challenge of evalu-
ating FL algorithms for customized applications, data hetero-
geneity, and system heterogeneity is often overlooked. This
issue presents a natural divide between conventional machine
learning developers and the FL community. By addressing
this challenge and enabling greater compatibility and share-
ability, FL can become more accessible to a wider range of
developers, further promoting its adoption and advancement.
Existing frameworks are inadequate. Although great ef-
forts have been made in developing FL community, these

Figure 2: The main workflow in FLGo.

frameworks failed to 1) fast convert any ML task into a fed-
erated benchmark to attract more researchers in the tradi-
tional ML community, and 2) provide high-level APIs for
customization on heterogeneity. To simulate more realistic
and complex scenarios when adopting FL, we propose FLGo.
We make a comparison between FLGo and other frameworks
to distinguish the advantages of FLGo in Table.1.

3 FLGo Features
3.1 Overview
The workflow in FLGo framework is as shown in Fig.2. First,
the blue benchmark plugin generates a static federated task on
the disk, which describes how the data is distributed among
participants. Second, FLGo system will load the model and
the stored task to construct the simulation. Then, the red al-
gorithm plugin will optimize the model under the virtual en-
vironment created by the green simulator plugin. Finally, the
logger will trace the running-time variables and save them as
a record on the disk for further analysis.

3.2 Benchmark Module
Comprehensive Benchmarks
We have provided 40+ out-of-the-box FL benchmarks in Ta-
ble.2. The details of each dataset are on the website1. These
benchmarks enable FLGo to support a wide range of studies
through three characteristics:

• Cross-Category. We implement the templates of bench-
mark plugins for different types of input data including
images, text, graphs, series, and tables.

1https://flgo-xmu.github.io

Category Task Scenario Datasets

CV
Classification Horizontal & Vertical CIFAR10, CIFAR100, MNIST, FashionMNIST,

FEMNIST, EMNIST, SVHN
Detection Horizontal Coco, VOC
Segmentation Horizontal Coco, SBDataset

NLP
Classification Horizontal Sentiment140, AG NEWS, sst2
Text Prediction Horizontal Shakespeare, Reddit
Translation Horizontal Multi30k

Graph
Node Classification Horizontal Cora, Citeseer, Pubmed
Link Prediction Horizontal Cora, Citeseer, Pubmed
Graph Classification Horizontal Enzymes, Mutag

Rec Rating Prediction Horizontal&Vertical Ciao, Movielens, Epinions, Filmtrust, Douban
Series Time series forecasting Horizontal Electricity, Exchange Rate
Tabular Classification Horizontal Adult, Bank Marketing, Heart Disease
Synthetic Regression Horizontal Synthetic, DistributedQP

Table 2: An overview of benchmarks in FLGo.

Name Feature Skew Label Skew Concept Drift Concept Shift Quantity Skew
IIDPartitioner [2017] ✓

DiversityPartitioner [2017] ✓ ✓
DirichletPartitioner [2019] ✓ ✓ ✓

GaussianPerturbationPartitioner [2022] ✓ ✓
IDPartitioner ✓ ✓ ✓ ✓ ✓

VerticalPartitioner ✓ ✓
NodeLouvainPartitioner [2021] ✓

Table 3: Partitioners for data heterogeneity in FLGo.

• Cross-Application. Tasks of different applications like
finance, healthcare, and IoT scenarios are integrated.

• Cross-Architecture. Benchmark plugins can also sup-
port FL with different architectures like horizontal FL,
vertical FL, decentralized FL, and hierarchical FL.

Customization

/*Code.1
import flgo
flgo.gen_benchmark(name, config, target_path,
data_type, task_type)

We design a general paradigm to ease the customization of
various benchmarks. In addition, we provide templates of
benchmark plugins for different categories of input data and
different types of tasks. By using the templates, developers
can integrate their customized benchmarks with only one line
of code as shown in Code.1.

Paritioner for Data Heterogeneity
To support studies in FL with different types of data het-
erogeneity categorized by [Kairouz et al., 2019], we create
reusable data partitioners to simulate real-world local data
distributions. In this way, developers can arbitrarily combine
the benchmark plugins and partitioners together to design the
data heterogeneity. We also provide APIs for customizing
new partitioners. We list the data heterogeneity currently sup-
ported by FLGo in Table.3.

3.3 Simulator Module
Existing frameworks [Xie et al., 2023; Lai et al., 2022]
provided realizations of particular system heterogeneity as
benchmarks, but they fail to support APIs for customization
on the system heterogeneity. Since both different types and
degrees of system heterogeneity have non-trivial impacts on
the training effectiveness [Lai et al., 2022; Wang et al., 2022],
it’s essential to allow developers to customize the system het-
erogeneity. To this end, we first conclude four types of system
heterogeneity that were investigated in previous FL studies:

• Availability. If a client is unavailable, the server cannot
select it to join the model training [Wang et al., 2022].

• Responsiveness. Responsiveness describes the length
of the period for the server to wait for the responses of
participants [Chai et al., 2020].

• Completeness. The client model updates may be
incomplete[Li et al., 2020; Wang et al., 2020].

• Connectivity. Some participants may lose connection
for a long period [Jiang et al., 2023] even if they had
been selected to join.

According to the aforementioned four types of system het-
erogeneity, we design 2 simulators, where one is based on
synthetic data and another one is based on real-world data
[Lai et al., 2022]. We first develop a client-state machine and
a global virtual clock to simulate heterogeneous systems. For
example in Fig.3, it takes client i 3 units of time to finish
local training at the first round, and the length of time units

Figure 3: FLGo simulates synchronous and asynchronous scenarios by using the global clock and the client-state machine, where each client’s
state can shift either as time passes or when a particular condition is reached (e.g., being selected by the center).

that are spent by client u is 4. Based on the global clock and
the client-state machine, we then design easy-to-use APIs for
developers to directly define how the state will shift for each
participant at each moment or each round. In this way, the
four types of system heterogeneity can be easily customized.

3.4 Algorithm Module
In FLGo, each algorithm plugin is described by parties with
their behaviors. We conclude the main features of the algo-
rithm module of FLGo in the following subsections.

Time-based asynchronism
Most of the previous studies in asynchronous FL are based
on round-wise asynchronism, which cannot be fairly com-
pared with the synchronous FL methods since the time cost
of each round is overlooked [Xie et al., 2019; Nguyen et al.,
2022]. To this end, we implement the asynchronous FL algo-
rithms based on the global virtual clock, where the develop-
ers should consider the behaviors of parties at each time unit
when realizing asynchronous algorithms. For example, the
server of fully asynchronous FL in Fig.3 samples participants
once they become available (e.g. client j at the 13th time unit)
in round 3, and receives the locally trained model from client
k at the same time unit. As a comparison, the synchronous
FL server in rounds 1 and 2 will wait for the slowest partici-
pant at each iteration. In this way, the algorithms in syncFL
and asyncFL are comparable under the same metric of time,
which enables developers to search for the best suitable strat-
egy under more realistic settings.

Flexible Communication
To enable different communication behaviors of parties, we
follow the gRPC protocol to model the communication pro-
cesses. Every time a party sends a message to a remote one,

it will receive a response that is returned by a corresponding
remote function. The transferred information is organized as
key-value pairs for high flexibility. By registering the mes-
sage handler to the specific message, developers can arbitrar-
ily customize the communication process. For example in
above Code.2, a party can send a specific message ’forward’
to ask another remote party for partial activations by register-
ing this message to the action of forward computing.

/*Code.2
import flgo.algorithm.vflbase

class ActiveParty(vflbase.ActiveParty):
def iterate(self):

...
prepare the sending package
pkg = self.set_message(\

mtype=’forward’, package={})
request activations from the party
acts = self.communicate_with(\

party.id, pkg)[’res’]

class PassiveParty(vflbase.PassiveParty):
def initialize(self):

register the action to ’forward’
self.actions = {’forward’:\

self.my_forward}

define the action
def my_forward(self, package):

...
return {’res’:activations}

Cross-Architecture
To ease the development of algorithms with different archi-
tectures (i.e. horizontal FL [McMahan et al., 2017], vertical

Figure 4: The acceleration by two levels of parallelism: (left)
runner-level, and (right) participant-level.

FL [Liu et al., 2022], decentralized FL[Beltrán et al., 2023],
and hierarchical FL [Liu et al., 2019]), we respectively con-
clude general paradigms for each type of architecture based
on previous works. By using these paradigms, developers can
easily customize their algorithms by only writing a few codes
to replace the corresponding parts in the paradigm.

3.5 Experiment Tools

Parallel Acceleration
We provide two-level parallels in FLGo to accelerate the FL
training process in simulations. The first one is the runner-
level, where each runner r = (A, θ, G, T , s) denotes using
the algorithm A to optimize the global model θ with the hy-
perparameters G on the federated task T under the environ-
ment created by the simulator s. The runner-level parallelism
enables developers to use multiple GPUs to save efficiency,
where devices will be automatically scheduled by the device
scheduler module to avoid out-of-memory errors. A runner
queue is used to promise that all the runners will successfully
finish their tasks, whereas the losers will be automatically
put back in the queue again. The second-level parallelism is
the participant-level, where each participant denotes a virtual
client of each runner. The participant-level parallelism accel-
erates the training process by reducing the wall-clock time of
iterative local training of all the participants. The accelera-
tion results are shown in Fig.4. The left part in Fig.4 shows
that increasing the runner-level parallelism can well reduce
the time cost as the number of runners grows. The right part
in Fig.4 shows that increasing the number of processes can
also save the training efficiency, especially when the cost of
data/model transmission across different devices is relatively
smaller than the local training processes.

Experiment Tracker and Analyzer
We realize two modules to help do experiments. First, we
use the logger to track the running-time variables of inter-
est without writing intrusive codes, and we preserve APIs to
customize loggers for different experimental purposes. The
logger module is also compatible with popular ML logging
tools like wandb [Biewald, 2020]. The running-time variables
of interest will finally be stored on the disk as records. Sec-
ond, we develop the analyzer to load the experimental records
from the disk and help make further analyses on them. We
also provide basic tools to visualize the records and generate
tables in a customizable manner.

Parameters Auto-Tuning
We realize automatically tuning hyper-parameters based on
the aforementioned parallelism. By using this module, devel-
opers can input the grid of hyper-parameters and specify the
GPUs to find the group of hyper-parameters that achieves the
optimal performance on the validation dataset.

4 Experiments
In this section, we conduct experiments to show how FLGo
facilitates FL studies by customization from three aspects:
data heterogeneity, system heterogeneity, and asynchronism.
The meanings of heterogeneity notions are in the appendix.

4.1 Experimental Settings
Datasets and Models
The datasets and corresponding models are concluded in
Tabel.4. For data heterogeneity experiments, we respectively
conduct I.I.D, quantity skew, and non-I.I.D scenarios for three
datasets. For CIFAR10, we use I.I.D, Imbalance (0.5), and
Dirichlet (0.3) data partition. For Cora, we employ IID, Im-
balance, and Louvain data partition. For the Shakespeare
dataset, we use IID, Imbalance, and Diversity (0.2) data par-
tition. For system heterogeneity and asynchronism experi-
ments, we use I.I.D and Dirichlet (1.0) data partition.

Baselines
For data heterogeneity experiments, the baselines are
FedAvg[McMahan et al., 2017], FedProx[Li et al., 2020],
and Scaffold[Karimireddy et al., 2020]. For system het-
erogeneity experiments, the baselines are FedAvg[McMahan
et al., 2017], FedNova[Wang et al., 2020], and FedProx[Li
et al., 2020]. For asynchronism experiments, the baselines
are synchronous algorithms FedAvg[McMahan et al., 2017],
FedProx[Li et al., 2020] and the asynchronous algorithm
FedAsync[Xie et al., 2019].

Hyparameters
We tune all the methods by grid search. The hyperparameters
for the CIFAR10 and Cora datasets: the number of rounds to
be 1000, the learning rate to be 0.1, proportion to be 1.0,epoch
E ∈{1, 3, 5}, and batch size to be 50. For the Shakespeare
dataset, we set rounds to 100, learning rate η ∈{0.1, 0.3, 0.8},
proportion to be 0.1, epoch E ∈{5, 10}, and batch size to be
64. For Fashion Mnist and SVHN dataset, the number of
rounds to be 1000, the learning rate to be 0.1, epoch to be 5,
and batch size to be 50. For Reddit dataset, the number of
rounds to be 1000, the learning rate, epoch and batch size to
be 1, 1 and 50, respectively.

Implementation
Experiments are run on a 64 GB-RAM Ubuntu 18.04.6 server
with Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 4
NVidia(R) 2080Ti GPUs, and PyTorch 1.12.0.

4.2 Data Heterogeneity
We compare the performance of three state-of-the-art FL
algorithms toward the non-IID problem in Table.5. The
algorithm’s performance varies significantly with different
datasets and distribution settings. For CIFAR10, Scaffold

Data Heterogeneity System Heterogeneity Asynchronous
Dataset Cifar 10 Cora Shakespeare Fashion Mnist Reddit SVHN

Task Image
Classification

Node
Classification

Next-Character
Prediction

Image
Classification

Next-word
Prediction

Image
Classification

Model Two-layer
CNN

Two-layer
GCN

Stacked
LSTM

Two-layer
CNN

Stacked
LSTM

Two-layer
CNN

Table 4: Experimental datasets and corresponding models.

Cifar10 - CNN Cora - GCN Shakespeare - LSTM
Data Heterogeneity IID Imbalance Dir(0.3) IID Imbalance Louv. IID Imbalance Div.
fedavg 0.8216 0.8303 0.7355 0.9059 0.9022 0.7693 0.4457 0.4424 0.3340
fedprox 0.8206 0.8207 0.7099 0.8911 0.9022 0.7638 0.4443 0.4432 0.2934
scaffold 0.8551 0.8474 0.7492 0.9151 0.9022 0.7638 0.4304 0.4309 0.2775

Table 5: Comparison on model testing accuracy of different methods across datasets and heterogeneity settings.

achieves the best performance under all the data distribu-
tions. For Cora, all the methods achieve similar model perfor-
mance. Scaffold achieves the best results on the IID distribu-
tion, while FedAvg performs the best on the Louvain distribu-
tion. For Shakespeare, the best results lie in FedAvg and Fed-
Prox, where Scaffold is the worst one across all the data dis-
tributions. These results suggest that there is no method that
always outperforms other methods across datasets and het-
erogeneity settings, which is consistent with the observations
in [Li et al., 2022]. In addition, the imbalance setting won’t
have an obvious impact on the results of all these methods.
The non-IID settings cause performance reduction for all the
methods on different datasets compared to the IID settings.

4.3 System Heterogeneity
We respectively investigate the impact of 4 different types of
system heterogeneity on three FL algorithms in FashionM-
NIST and Reddit datasets: FedAvg[McMahan et al., 2017],
FedNova[Wang et al., 2020] and FedProx[Li et al., 2020].
Fig.5(a) suggests that the heterogeneity of client availability
has a non-trivial negative impact on the performance of all the
methods. Especially, when data heterogeneity meets avail-
ability heterogeneity, the performance is further worsened
than the IID scenario on both two datasets. Fig.5(b) shows
the impact of heterogeneity in client completeness. When
clients are not able to complete all the local training epochs,
the training efficiency is correspondingly degraded. Although
FedNova is claimed to be robust to varying completeness,
its performance is slightly worse than FedAvg and FedProx
in FashionMNIST, which may be due to the over-enlarging
of short model updates. Fig.5(c) shows the impact of het-
erogeneity in client connectivity. We use the virtual time as
the horizontal axis instead of the communication round since
the server will wait for another unit of time once there exist
dropping-out clients. The results show that less connectivity
will increase the time cost of the training process. For Fash-
ionMNIST, the connectivity has only a trivial impact on the
model performance. For Reddit, less connectivity causes per-
formance degradation in the non-IID setting. Fig.5(d) shows

the impact of heterogeneity in client responsiveness. This het-
erogeneity will only influence the time cost of training since
the server will wait for all the clients. The results show that
a larger variance of client latencies leads to larger time costs
with the same client latency mean. This is consistent with the
Cask Effect where the slowest client will dominate the time
costs for synchronous algorithms.

4.4 Asynchronism
We create a complex combination of different hetero-
geneity to customize the environment. First, we make
the probability of each client follow the distribution
lognormal(0,−log(0.1)). We use the same completeness
heterogeneity setting in [Li et al., 2020]. We make the clients
have the same drop probability of 0.5, and we set the response
latencies of clients to follow a log-normal distribution with
(mean, var.) = (200, 50). The results in Fig.5(e) show that
asynchronous strategies can significantly reduce time costs
when carrying out the same times of aggregation. Under the
IID setting, FedAsync reduces the time cost to achieve the
same model performance against other baselines. Under the
non-IID setting, the performance of FedAsync is worse than
FedAvg and FedProx after the same amounts of aggregations,
which suggests that the effectiveness of aggregation for asyn-
chronous strategies can be further improved.

5 Conclusion
In this work, we presented a novel lightweight FL platform,
FLGo, to facilitate cross-application FL studies with a high
ability of shareability . FLGo offers 40+ benchmarks, 20+ al-
gorithms, and 2 system simulators as out-of-the-box plugins.
We also developed a range of experimental tools for various
experiment purposes. Comprehensive experiments were con-
ducted to verify the ability of customization of FLGo, under
various data and system heterogeneity settings.

Acknowledgments
The research was supported by Natural Science Foundation
of China (62272403, 61872306).

(a) The impact of client availability

(b) The impact of client completeness

(c) The impact of client connectivity

(d) The impact of client responsiveness

(e) Asynchronism

Figure 5: The subfigures in the first 4 rows conduct the impact of system heterogeneity, where each row’s heterogeneity is of: (a) availability;
(b) completeness; (c) connectivity; and (d) responsiveness. For each row, in the order from left to right: IID-Fashion, Dirichlet-Fashion,
IID-Reddit, and Dirichlet-Reddit. (e) compares synchronous and asynchronous strategies in the simulation of the complex combinations of
different heterogeneity.

References
[Beltrán et al., 2023] Enrique Tomás Martı́nez Beltrán,

Mario Quiles Pérez, Pedro Miguel Sánchez Sánchez,
Sergio López Bernal, Gérôme Bovet, Manuel Gil
Pérez, Gregorio Martı́nez Pérez, and Alberto Huertas
Celdrán. Decentralized federated learning: Fundamentals,
state-of-the-art, frameworks, trends, and challenges, 2023.

[Beutel et al., 2020] Daniel J Beutel, Taner Topal, Akhil
Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao,
Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro
Porto Buarque de Gusmão, et al. Flower: A friendly
federated learning research framework. arXiv preprint
arXiv:2007.14390, 2020.

[Biewald, 2020] Lukas Biewald. Experiment tracking with
weights and biases, 2020. Software available from
wandb.com.

[Bonawitz et al., 2019] Keith Bonawitz, Hubert Eichner,
Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano
Mazzocchi, Brendan McMahan, et al. Towards federated
learning at scale: System design. Proceedings of machine
learning and systems, 1:374–388, 2019.

[Caldas et al., 2018] Sebastian Caldas, Sai Meher Karthik
Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Bren-
dan McMahan, Virginia Smith, and Ameet Talwalkar.
Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

[Chai et al., 2020] Zheng Chai, Ahsan Ali, Syed Zawad,
Stacey Truex, Ali Anwar, Nathalie Baracaldo, Yi Zhou,
Heiko Ludwig, Feng Yan, and Yue Cheng. Tifl: A tier-
based federated learning system. CoRR, abs/2001.09249,
2020.

[He et al., 2020] Chaoyang He, Songze Li, Jinhyun So, Xiao
Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth
Vepakomma, Abhishek Singh, Hang Qiu, et al. Fedml:
A research library and benchmark for federated machine
learning. arXiv preprint arXiv:2007.13518, 2020.

[Hsu et al., 2019] Tzu-Ming Harry Hsu, Hang Qi, and
Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. CoRR,
abs/1909.06335, 2019.

[Jiang et al., 2023] Zhifeng Jiang, Wei Wang, and Ruichuan
Chen. Taming client dropout and improving efficiency for
distributed differential privacy in federated learning, 2023.

[Kairouz et al., 2019] Peter Kairouz, H. Brendan McMahan,
Brendan Avent, Aurélien Bellet, Mehdi Bennis, and et al.
Advances and open problems in federated learning. CoRR,
abs/1912.04977, 2019.

[Karimireddy et al., 2020] Sai Praneeth Karimireddy,
Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. Scaffold:
Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages
5132–5143. PMLR, 2020.

[Lai et al., 2022] Fan Lai, Yinwei Dai, Sanjay Singapuram,
Jiachen Liu, Xiangfeng Zhu, Harsha Madhyastha, and
Mosharaf Chowdhury. Fedscale: Benchmarking model
and system performance of federated learning at scale.
In International Conference on Machine Learning, pages
11814–11827. PMLR, 2022.

[Li et al., 2020] Tian Li, Anit Kumar Sahu, Manzil Zaheer,
Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Pro-
ceedings of Machine learning and systems, 2:429–450,
2020.

[Li et al., 2022] Qinbin Li, Yiqun Diao, Quan Chen, and
Bingsheng He. Federated learning on non-iid data silos:
An experimental study. In IEEE International Conference
on Data Engineering, 2022.

[Liu et al., 2019] Lumin Liu, Jun Zhang, S. H. Song, and
Khaled Ben Letaief. Client-edge-cloud hierarchical feder-
ated learning. ICC 2020 - 2020 IEEE International Con-
ference on Communications (ICC), pages 1–6, 2019.

[Liu et al., 2021a] Quande Liu, Cheng Chen, Jing Qin,
Qi Dou, and Pheng-Ann Heng. Feddg: Federated do-
main generalization on medical image segmentation via
episodic learning in continuous frequency space, 2021.

[Liu et al., 2021b] Yang Liu, Tao Fan, Tianjian Chen, Qian
Xu, and Qiang Yang. Fate: An industrial grade platform
for collaborative learning with data protection. The Jour-
nal of Machine Learning Research, 22(1):10320–10325,
2021.

[Liu et al., 2022] Yang Liu, Yan Kang, Tianyuan Zou, Yan-
hong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Yaqin
Zhang, and Qian Yang. Vertical federated learning. ArXiv,
abs/2211.12814, 2022.

[Long et al., 2021] Guodong Long, Yue Tan, Jing Jiang, and
Chengqi Zhang. Federated learning for open banking,
2021.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

[Nguyen et al., 2021] Dinh C. Nguyen, Ming Ding, Pub-
udu N. Pathirana, Aruna Seneviratne, Jun Li, and H. Vin-
cent Poor. Federated learning for internet of things: A
comprehensive survey. IEEE Communications Surveys &
Tutorials, 23(3):1622–1658, 2021.

[Nguyen et al., 2022] John Nguyen, Kshitiz Malik,
Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat,
Mani Malek, and Dzmitry Huba. Federated learning
with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pages
3581–3607. PMLR, 2022.

[Ryffel et al., 2018] Theo Ryffel, Andrew Trask, Morten
Dahl, Bobby Wagner, Jason Mancuso, Daniel Rueck-
ert, and Jonathan Passerat-Palmbach. A generic frame-
work for privacy preserving deep learning. arXiv preprint
arXiv:1811.04017, 2018.

[Wang et al., 2020] Jianyu Wang, Qinghua Liu, Hao Liang,
Gauri Joshi, and H Vincent Poor. Tackling the objective in-
consistency problem in heterogeneous federated optimiza-
tion. Advances in neural information processing systems,
33:7611–7623, 2020.

[Wang et al., 2021] Zheng Wang, Xiaoliang Fan, Jianzhong
Qi, Chenglu Wen, Cheng Wang, and Rongshan Yu. Feder-
ated learning with fair averaging, 2021.

[Wang et al., 2022] Zheng Wang, Xiaoliang Fan, Jianzhong
Qi, Haibing Jin, Peizhen Yang, Siqi Shen, and Cheng
Wang. Fedgs: Federated graph-based sampling with ar-
bitrary client availability, 2022.

[Xie et al., 2019] Cong Xie, Oluwasanmi Koyejo, and In-
dranil Gupta. Asynchronous federated optimization.
ArXiv, abs/1903.03934, 2019.

[Xie et al., 2023] Yuexiang Xie, Zhen Wang, Dawei Gao,
Daoyuan Chen, Liuyi Yao, Weirui Kuang, Yaliang Li,
Bolin Ding, and Jingren Zhou. Federatedscope: A flexible
federated learning platform for heterogeneity. Proceedings
of the VLDB Endowment, 16(5):1059–1072, 2023.

[Zhang et al., 2021] Ke Zhang, Carl Yang, Xiaoxiao Li,
Lichao Sun, and Siu-Ming Yiu. Subgraph federated
learning with missing neighbor generation. CoRR,
abs/2106.13430, 2021.

	Introduction
	Related Works
	FLGo Features
	Overview
	Benchmark Module
	Comprehensive Benchmarks
	Customization
	Paritioner for Data Heterogeneity

	Simulator Module
	Algorithm Module
	Time-based asynchronism
	Flexible Communication
	Cross-Architecture

	Experiment Tools
	Parallel Acceleration
	Experiment Tracker and Analyzer
	Parameters Auto-Tuning

	Experiments
	Experimental Settings
	Datasets and Models
	Baselines
	Hyparameters
	Implementation

	Data Heterogeneity
	System Heterogeneity
	Asynchronism

	Conclusion

